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To Michael Golomb

Periodic solutions of Hamiltonian systems: a survey

Hamiltonian systems of ordinary differential equations model the motion

of a discrete mechanical system. During the past few years there has been

a considerable amount of progress in the study of periodic solutions of such

systems with many new ideas and methods of solution being introduced. The

purpose of this paper is to survey these recent developments and their

connection with some earlier results. In particular the main results that

have been obtained will be stated and an indication will be given of their

proofs. A few open questions will also be mentioned. . 7
Let p,q E Rn and H : Zn - R be differentiable. An auto-

nomous Hamiltonian system has the form:

(0-1 IN(p a q) q -H (p. q)(0.1) 8H8

d

where • denotes d This system can be represented more concisely as

(HS) z.- pHz(z)

where z =(p, q) and J being the identity matrix in
En . Also of interest is the forced analogue of (HS) :

(FHS) = Z)

where H depends explicitly on t in a time periodic fashion.

- S mm .-. -
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There are many types of questions, both local and global, that have

been studied for (HS) and (FHS) One set of questions has been
motivated by the fact that H is an integral of the motion for (HS), i.e.

if z(t) satisfies (HS) , H(z(t)) is independent of t . Thus one can

seek solutions of (HS) having prescribed energy and ask what geometrical

properties must an energy surface possess in order for there to exist periodic

orbits of (HS) on it. Multiplicity questions are also natural: how many

geometrically distinct periodic solutions can there be on a given energy level.

Other questions of interest are the existence of solutions of (HS) having a

prescribed period and of (FHS) having the given period of forcing. In the

setting of (FHS) one can also study the existence of subharmonic solutions,

i i.e. solutions having a period which is an integer multiple of the period of

forcing. Concerning local questions, perturbations of equilibrium or periodic

solutions lead to problems of continuation and bifurcation.
~The underlying theme in the recent treatment of these problems has

been the use of the calculus of variations in finding solutions as critical

points of a functional. There have been approaches to (HS) and (FHS)

from three main directions: (i) differential geometry-obtaining solutions as

geodesics in an appropriate metric; (il) the direct methods of the calculus

of variations-obtaining solutions by minimax arguments from indefinite

functionals; (i1) convex analysis and optimization theory-obtaining solu-

tions for convex H using tools such as the Legendre transformation to

simplify the problem.

We will mainly concern ourselves with the existence of periodic solutions

of (HS) and (FHS) in the large. However to add perspective some local

results also will be mentioned. This will be done in 51. Global results will

be described in §2.



2
V

§1. Local results

This section is concerned with some local results for (HS) and

(FHS) • The early work in this direction had an analytical flavor while

the more recent research makes essential use of topological arguments.

We begin with a study of (HS) . To normalize matters, 'let H(O) 0 .

We further assume Hz(0) = 0 so z 0 is a solution of (HS) • The

question of interest then is the existence of time periodic solutions of (HS)

which are small in amplitude. An old result of Lyapunov [1] -the Lyapunov

Center Theorem-applies to this situation:

Theorem 1.1: Suppose H is twice continuously differentiable near 0,

Hz(0) = 0 , and the spectrum of PHzz(0) , ( Hzz(0)) = ( ±i0), =im)

where isreal, j n If is not an integer for Jil,

then (HS) possesses a one parameter family of periodic solutions z s(t)

whose periods T(s) - 27/41 as s- 0

Actually Lyapunov looked at a more general situation than (HS)

After some simplifications, the proof of Theorem 1.1 can be reduced to the

implicit function theorem. If further "nonresonance" assumptions are made

on the numbers %, (HS) possesses n distinct one parameter families

of solutions near z = 0 . Thus if H(z) > 0 for small z p 0 these

curves of solutions will pierce H-1(c) for small c > 0 and H-I (c)

contains n geometrically distinct periodic solutions of (HS) • Many

attempts were made to obtain similar results without having to impose

nonresonance or irrationality assumptions on (j) . See e.g. Gordon EZ]

for such a partial result. No major successes were achieved however until

1973 when A. Weinstein (3] proved:

-.-. -- - -- -.-. %.. ,
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Theorem 1.2: Suppose H is twice continuously differentiable near 0,

He (0) = 0, and H zz(0) is positive definite. Then for all sufficiently

small c > 0, (HS) possesses n geometrically distinct periodic

solutions on H -(c).

Other versions of the result permit the assumption on H zz(0) to be

weakened somewhat [3,4]. Weinstein's original proof of Theorem 1.2

relies on tools from the theory of Lagrangian manifolds. Moser [4] presents

a simpler proof using a variant of the method of Lyapunov-Schmidt to reduce

the problem to that of finding critical points of a C1 function on SZn-,

the function being invariant under a fixed point free S action. A standard

minimax theorem then provides n geometrically distinct critical points.

Other results on perturbation of periodic solutions can be found in Bottkol

[5] and Weinstein [6]

It is interesting to note that Theorem 1.2 can be interpreted as the

I
S version, in its setting, of a bifurcation theorem involving functionals with

a Z symmetry due to Bohme [7] and Marino [8] . They proved that if

E is arealHilbert space and f c C (E, R) with f even, f'(u)= Lu +H(u).

L being linear and H(u)= o(lull) at u= 0, thenif pt u(L) Iean

isolated eigenvalue of multiplicity n, the equation f (u) a Xu has, for

each sufficiently small r > 0 , at least n distinct distinct pairs of solutions

(X,±u) with lul = r near (g,0). (Here f'(u) denotes the Frechet

derivative of f . Using the duality between E and E' , it can be
interpreted as a mapping of E to E). The work of Bohme and Marino

motivated Fadell and the author to study the existence of solutions to f'(u) Xu

as a function of X for X near g (9 . Applying these ideas to (HS)

where S symmetries occur In a natural fashion when seeking periodic
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solutions, we considered solutions of (HS) near a bifurcation point as a

function of the period (10] and showed:

Theorem 1.3: Suppose H is twice continuously differentiable near 0

and H z(0) = 0 . Let R n - El FE where E and E. are invariant

subspaces for the flow given by

(1.4) w ;H (0) w

Suppose all solutions of (1.4) with initial data in E1 are T periodic, no

solutions of (1.4) with initial data in E2 \ {0) are T periodic, and there

are no equilibrium solutions of (1.4) in El\(0} . If the signature Zv

of the quadratic form (Hzz(0) 1 ) , , E is nonsingular, then either

(i) every neighborhood of z = 0 contains T periodic solutions of (HS) or

(ii) there are a pair of integers k, m - 0 such that k+m 2 IvI and left

and right neighborhoods , 0'Jr of T in R such that for all X a J

(resp. Jr )  (HS) possesses at least k (resp. m) distinct nontrivial

X periodic solutions.

The proof of Theorem 1.3 is related to that of Theorem 1. Z sketched

above. To begin one seeks solutions of (HS) in an infinite dimensional

space of periodic functions. The method of Lyapunov-Schmidt reduces the

problem to a finite dimensional one and a minimax argument relying on an

S I symmetry inherent in the problem gives the solutions as critical points

of a variational formulation of (HS) . The minimax construction of the

critical points here is more subtle than in [4] due to the fact that there is

no analogue of the energy surface constraint of Theorem 1.2 here so one is

working in a neighborhood of 0 rather than on a compact manifold. A special

case of Theorem 1. 3 was obtained independently by Chow and Mallet-Paret [11].
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We conclude this section by stating a local theorem concerning the

existence of subharmonic solutions of (FHS) due to Birkhoff and Lewis

[12-14] . Some preliminary remarks are necessary. If H is smooth near

z= 0, H(t,0)= 0 and Hz(t,0)= 0, then H(tz)= Q(t,z)+R(tz)

where Q is quadratic in z and R(tz) = o(IzI 2 ) at z= 0 . If the

Floquet exponents for the linear Hamiltonian system corresponding to Q are

purely imaginary, Floquet theory and the Hamiltonian character of (FHS)

permit canonical changes of dependent variables so that the transformed problem

has a time independent quadratic part of the form

(1.5) i i

(See Arnold [15]). Thus we can assume Q =Q(z) and has the form (1.5).

Let A = (Xl°.-Xn) and let k bea multlindex, k= (kl*..-,kn) E Zn.n

Set kl = kI + " +kn and (Ak)Z= I E I ki If H is C with1=1
respect to z near 0 and (A,k) 'Z for all Iki I 4, then there exists

a canonical change of variables which transforms H into the Birkhoff normal

form:

(1.61 Qlz) + a +i 0( 1 + o( 4
iiJj

at z = 0 . (See [15] or Siegel-Moser [16]). Now we can state:

Theorem 1.7: Suppose H is C4  near 0 and periodic in t with

H(t,z)=Q(z)+R(t,z), Q asIn (1.5) and R(t,z)- o(IzI?) at z 0.

If (A,k) I Z forall Ikl S 4 and det(O)ij i 0 in (1.6), then (FHS)

possesses a sequence of subharmonic solutions (Zk) with arbitrarily large

minimal periods.
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Above det (aij) denotes the determinant of the matrix (of,,)

There is also a variant of Theorem 1.7 for (HS) [17] A proof of Theorem 1.7

but in the setting of maps can be found in Moser [18] . A less general

version of Theorem 1.7 in the above setting is proved in Harris [17]

all



§ 2. Global results

In this section the existence in the large of periodic solutions of (HS)

and (FHS) will be studied. Our presentation will be roughly chronological.

The first work we know of in a global setting is due to Seifert [19] who

considered Hamiltonians consisting of the sum of a kinetic and a potential

energy term. He essentially proved:

n
Theorem 2.l: Let H(p,q) = I aiJ(q) PjPj + V(q) where

i, J=l

a V E C (R n R), the matrix (aij(q)) is uniformly positive definite

in S = {q E I V(q)< 1} and V satisfies

(V) S is C2 diffeomorphic to the unit ball in' Rn .

(V2 ) ft is a manifold.

* Q*

Then there exist points q , Q 8 * T > 0, and a solution (p(t), q(t))

of (HfS) such that (p(0), q(0)) (0, q) (P(T), q(T)) = (0.Q, and

q(t)4E for O<t<T

Thus Theorem 2.1 gives us a solution whose motion begins and ends on

the boundary of the potential well & . Seifert actually assumed real analyticity

for aij and V but C2  suffices for his arguments. Observing that H

is even in p, a 2T periodic solution of (HS) on H'I(1) can be

constructed by extending q as an even function and p as an odd function

about 0 and T.

I[L A - " _.. .. .. . .-- / . . .
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The existence of periodic solutions having a prescribed mean

potential energy was studied by Berger [ZO] for a class of second order

Hamiltonian systems which have a less general potential energy term than

given above.

Theorem Z.1 was generalized by A. Weinstein [21] who permitted

a wider class of kinetic energy terms:

Theorem Z.2: Suppose H(p,q) = K(p,q) + V(q) where K c C2 (RZn R ) ,

V ! C2(R n , R) , V satisfies (V1) , (V2 ) , and K satisfies

(K1 ) K is even and strictly convex in p for each q ES.

( Kz) K(O,q)= 0 and K(p,q)--m as IpI- uniformlyfor q E.

Then the conclusions of Theorem 2.1 obtain.

Seifert used ideas from differential geometry to prove Theorem 2.1.

Roughly speaking he found the solution as a geodesic for a Riemannian metric

(called the Jacobi metric) associated with the kinetic energy term in his

Hamiltonian. Weinstein used a similar argument in his setting, the Riemannian

metric being replaced by a Finsler metric associated with the more general K.

Due to the fact that the metric degenerates on 88 , an approximation argument

and a priori bounds which keep the approximate period away from 0 and *

are required in both cases.

Weinstein goes on in [21] to prove a result for general Hamiltonian

systems:

Thorm .3 Supoe aC2 Z n H-1Theorem 2.3: Suppose H a C2R n , R) and H-(1) is a manifold which

bounds a compact convex region in R n . Then (HS) possesses a periodic

solution on H- 1 (l)
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The proof of Theorem 2. 3 involves a clever application of Theorem 2. 2.

A new Hamiltonian on R4 n is constructed which satisfies the hypotheses of

Theorem 2 .2 (with n replaced by 2n ) and for which solutions of the type

given in Theorem 2.2 correspond to periodic solutions of (HS) on H 1 (1)

Simultaneous to Weinstein's work on Theorem 2.3, this author also

was studying (HS), but from a totally different point of view, and obtained

the following somewhat more general result [22]

Theorem 2.4: Suppose H e Cl(RZn, R) and H- 1(1) is a manifold which
2n Zn

bounds a compact star-shaped region in R i.e. there is a R R

such that, with g as origin, H (1) is radially diffeomorphic to S

Then (HS) possesses a periodic solution on H-1 ( 1)

To describe the approach taken to (HS) in [22] , observe first

that the period of any periodic solution on H-l(1) is not known a priori.

It is convenient to rescale the time variable and replace (HS) by

(2.5) ZX;Hz(z)

where we now seek a 27 periodic function z and a nonzero scalar X

(essentially the unknown period) such that the pair satisfy (2. 5). The idea

now is to use the calculus of variations to find a solution of (2.5). Let

( , ) denote the inner product of two vectors in R. Formally a critical

point z of the action integral
Z-

(2.6) A(z) f (p, q) n dt

subject to the constraint
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i_ 2

(. 7) f H (z) dt= 1

has (Z. 5) as its Euler equation, X appearing as a Lagrange multiplier

due to (2.7). Moreover since z satisfies (2.5), H (z(t)) c,

a constant, and by (2.7), c= 1.

It seems to be a difficult matter to make these heuristics precise in

a direct fashion. Instead a finite dimensional approximation argument,

looking for solutions in the class of trignometric polynomials was used in

(22]. Observe that A(z) and the constraint are invariant if z(t) is

replaced by z(t+e ) for e e (0,2] , i.e. the problem possesses an S1

1symmetry. Thus employing an index theory for such S actions [10] and

minimax arguments, critical points can be obtained for an approximating

finite dimensional problem. Appropriate bounds for approximate solutions and

their associated Lagrange multipliers allow one to pass to a limit and solve

(2. 5).

An interesting geometrical result concerning the relation between the

period and H- (1) that comes up in the course of the proof of Theorem 2.4

is the following:

1 ZnTheorem 2.8: Suppose H E C (R R) is homogeneous of degree two

and positive for z ;d 0 . Let r and R denote respectively the radii of

the smallest inscribed and largest circumscribed sphere for H ((0, 1])

Then (HS) has a T periodic solution on H-1 ( I) with

The bounds obtained in Theorem 2.8 play a role in the proof of

Theorem 2 .4. We depart from our chronological development for a moment to
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mention the following result which was motivated by Weinstein's

Theorem 2.2:

Theorem 2.9 [23] : Suppose H (p,q) = K(p, q) + V(q) where

K e C (R , R), V C (Rn , R), V satisfies (V1 ) - (VZ ), and K

satisfies (K?) and

(K3 ) (p,Kp(pq))Rn > 0 for p/ 0

Then (HS) possesses a periodic solution on H-1 ( 1)

Thus Theorem 2.9 replaces the convexity hypothesis (KI) by the

"starshaped" assumption (K3) . The proof of Theorem 2.9 is based on that

of Theorem 2 .4, the bounds required here being somewhat more difficult to

obtain. Theorems 2 .1, 2 .2, 2.4, and 2.9 all give sufficient geometrical

conditions under which (HS) possesses periodic orbits on H- (1) . Just

how general an energy surface one can take and still be guaranteed the existence

of periodic orbits of (HS) on it remains an open question. See e.g. [24]

for some conjectures in this direction.

Our discussion up to this point has only dealt with global results for

(HS) when the energy is prescribed. In [22] a study also was begun of

the existence of periodic solutions of (HS) when the period is prescribed.

The simplest such case treated in [22] is:

Theorem 2.10: Suppose H 4 C I R Zn, R) and satisfies

( H1 ) H(z) 0

(HZ) H(z)= o(Iz 2) at z= 0
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(H3 ) There are constants r > 0 and IL >2 such that for all Izi > r,

0 < ILH(z) - (ZHz(Z)) Zn 

Then for any T > 0, (HS) has a nonconstant T periodic solution.

A few remarks about this theorem are in order. First integrating the

inequality in (H 3 ) shows there are constants al , az > 0 such that

(2.11) H(z) - alzI - a.

Znfor all z E R , i.e. H grows at a "superquadratic" rate as Izi - ,

Likewise (H.) implies H(z)-0 as IzI -. 0 at a superquadratic rate.

The proof of Theorem 2.10 is in the same spirit as that of Theorem 2.4.

Suppose for convenience we seek a Zr periodic solution of (HS) • Then any

critical point of

2W
(2.12) I(z)= A(z)- f H(z) dt

0

in the class of Zw periodic functions is a solution of (HS) • To obtain a

critical point of I, one proceeds as in Theorem 2 .4 with three main

differences: (i) no constraint is involved here; (ii) a minimax argument

is given based on (HI) - (H3 ) and which avoids the use of symmetries and

the index theory of [10]; (iii) an additional difficulty is encountered here

due to the presence of the trivial solution z a 0 . To overcome (i), a

comparison argument is employed which shows I(z) >0 0 for the solution

constructed. Hence (H1 ) and (2.12) imply z is nonconstant.

In research subsequent to [ZZ], Benci and the author obtained a

critical point theorem for indefinite functionals [25] which can be used to
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bypass the finite dimensional approximation arguments of [2Z] and get a
1,z 1 Zn

critical point of (2.12) directly in the Sobolev space (W 2 ' (SI))

See also Ekeland [26] who gave a direct proof of a special case of

Theorem Z. lO.

Several variants of Theorem 2.10 were also proved in [22] including

one for (FHS) • We will return to this result later when we discuss

subharmonics for (FHS) . Also discussed in [ZZ] were some results for

second order Hamiltonian systems:

(2.13) q + V (t.q)= 0
q

where q E Rn, for forced or free V which satisfy hypotheses like

(HI) - (H3 )

Although in its setting Theorem 2.10 guarantees a nonconstant solution

of period T of (HS) for all T > 0 , nothing is implied concerning the

existence of a solution having minimal period T . We suspect that

(Hl) - (H3 ) are sufficient to give solutions of (HS) of minimal period T

for any T > 0 . However if (HI) - (H?) are dropped, one cannot expect

this to be the case. Indeed suppose n = I and consider H(z) = g( Izi)

where g t C (R, R) . Setting , = p + iq, the corresponding Hamiltonian

system can be written in complex form as

(2.14)=

Thus 4(t) = 40 exp [Zig'( II 2 )t] so if T is the minimal period of (t),

T ,r[g( 1r11)]-I. Consequently g';tl implies T sZw

F r .' ............ , ..
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I!

On the other hand if one is not interested in solutions having minimal

periods, one can do much better than Theorem Z.10, namely:

Theorem Z.15 [27] : Suppose H e C I(R n , R) and satisfies (H3 )

Then for all T, R > 0, (HS) has a solution z of period T and satisfying

zlzl > R.

Thus one can obtain arbitrarily large T periodic solutions (which as

the above example shows may not have minimal period T ). The proof of

Theorem 2.15 is more complicated than that of Theorem Z.10, the structure

given by (H1) - (H.) being replaced by the S invariance of 1(z) as

was employed in the proof of Theorem 2.4.

One final remark about the proof of Theorem 2. 10 : Although it

appears to be rather different from Theorem 2.4, the two are closely related

and in fact Theorem 2.10 can be used to give a short elementary proof of

Theorem 2.4 [Z7] .

At this point in the development of the theory, the convex analysts

make their appearance. F. Clarke [28, 29] gave a new and simpler proof

of Theorem 2. 3. In addition he weakened the smoothness assumptions on

H to merely convexity and continuity so (HS) becomes an inclusion rather

than an equation. However in our description here, we prefer to stay in the

classical framework. Part of Clarke's idea is to employ a Legendre trans-

formation to convert the problem to a simpler one. Unlike the usual situation

n mechanics, he uses a Legendre transformation In all variables. Equation

(HS) can be written as

(Z.16) - Hz(z)

z"



with, in the setting of Theorem 2.3, H globally convex via a trick

of [21] or [Z]. Thus Hz is monotone. In essence, Clarke inverts

Hz in (2.16) transforming it to

(z.17) z = -;) .

This new equation in which z is taken to be the independent variable can

be given a variational formulation for which a solution can be obtained as a

minimum of the corresponding functional.

As another consequence of these ideas, Clarke and Ekeland [30]

studied a situation complementary to that of Theorem 2.10 in which H is

"subquadratlc"at 0 and . , i.e.

r2

(H4 ) H(z)lzI-2 - 0 as zI- -

and

(H5) H(z)zj - z - -  as z1:- 0

They proved

TheoremZ.18: Suppose H a C (IZn, R), H is convexwith H(0)= 0,

Hz(0)= 0, and satisfies (H4)- (H5). Then for all T > 0, (HS) hasa

solution having minimal period T

The minimality of T is a consequence of the characterization of the

solution as a minimum of a variational problem. This theorem is the only

result we know of in the context of general Hamiltonian systems which

obtains information on minimal periods. See also Berger (Z0] or [31] for

results on second order Hamiltonian systems.
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In a further application of Legendre transformation ideas in conjunction

with minimax arguments and the index theory of [10], Ekeland and Lasry proved

a nice result which furnishes a partial globalization of Weinstein's bifurcation

theorem (Theorem 1.2). Let B P denote a Euclidean ball of radius p

Theorem 2.19: Suppose H E C ( 1RZn.R) and H- 1(1) Is a manifold

which bounds a compact convex domain g . If there are positive numbers

r and R < 4"2r such that Br C n C BR. then H- 1 (1) contains at

least n geometrically distinct periodic solutions of (HS)

Whether or not the restriction on the shape of gi is essential remains

an open question. Likewise nothing Is known about the number of periodic

solutions of (HS) In the settings of Theorems 2.1, 2.2, and 2.9. Also

of Interest are the number of solutions of (HS) having a given minimal

period. No progress seems to have been made in this direction.

In addition to Theorem 2.18, there have been a considerable number of

results obtained for subquadratic Hamiltonian systems, both autonomous and

forced, satisfying variants of (H4 ) and (H5 ) . We will not go into detail

here but they include works by Benci [32-34], Benci and Rabinowitz [25],

Brezis and Coron [35], and Coron [36] . Also Amann [37] and Amann

and Zehnder [38-39] have studied problems which Lie on the border between

sub- and superquadratic, namely Hamiltonian systems which are quadratic

near 0 and m but have different signatures. Using a global Lyapunov-

Schmidt reduction, minimax arguments and index theories, they obtain many

existence and multiplicity results for (HS) and (FHS) . Some earlier

special cases were obtained by D. Clarke (40]
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Next we shall describe a contribution to subharmonic solutions of

(FHS) . As was mentioned earlier, a variant of Theorem 2. 10 for (FHS)

was given in [22] . It turns out that under the same hypotheses much more

is true:

Theorem 2.20 (41]: Suppose H e CI ( 2 n , R) and satisfies

(H6) There is a constant T> 0 such that H(t+T, z) = H(t, z) for

all t E R, z 4 R2 n

(H7 ) There are constants c, > 0 such that for I zI >
I H zatz z)s a(z, IzRt Zn

and (HI) - (H3 ) with respect to z . Then for each k E IN, (FHS)

possesses a k T periodic solution Zk(t) . Moreover infinitely many of the

functions zk are distinct.

The proof of this result follows from the abstract critical point theorem

i of (25] combined with some bounds for the critical points and a simple

indirect argument showing infinitely many must be distinct. Theorem 2.20 can

be viewed as a global relative of the Birkhoff-Lewis theorem where (H3) plays

the role of the condition on the quartic part of H In Theorem 1.7. In fact

one can prove a local variation on Theorem 1.7 using (H3 ) and Theorem Z .20

as a tool. Clarke and Ekeland (42] have also obtained a result on sub-

harmonics for second order forced Hamiltonian systems (Z. 13) with convex

subquadratic V(q) . See also (41] for another subquadratic case.

Our final result is a recent theorem of Gluck and Ziller [43] concerning

the fixed energy case of (HS) which extends Theorem - .2.

- . - - - . - . . . -_ .... . ... . . ........ .
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Theorem2.zl: Suppose H(pq)- K(pq) +V(q) where

K 4 C (R n , R) V a C Z(, ), K satisfies (KI)- (KZ), and V

satisfies

(V 3 ) A= {q e Rn I V(q) :s 1) is compact and nonempty

and (V,) . Then (HS) possesses a periodic solution on H- (I)

The proof of Theorem 2.21 follows the geometrical approach of [19]

'J,, A) and [2] together with some further topological ideas.

* In conclusion it should be mentioned that one of the main sources of

Inspiration for the development of Hamiltonian mechanics was the field of

celestial mechanics. In this field, unlike the situations described above,

_,3one encounters Hamiltonians which possess singularities. We believe

celestial mechanics Is a very interesting and possibly fertile proving ground

for the further development of the ideas and methods described in this survey.

h/
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